Embedding AI models for GNSS signal spoofing on Maxim boards

Porting deep learning models on custom NPU-enabled boards.

Requirements

  • B.Sc. in Computer Science, Telecommunications, Electronics or similar
  • Knowledge of C language, Python
  • Software development skills
  • Basic concepts of electronics, image processing
  • Basic concepts of data science, concerning data analysis, processing and machine learning

Description

Global Navigation Satellite System (GNSS) spoofing has emerged as a critical concern in satellite-based positioning, navigation, and timing (PNT) applications. As our reliance on GNSS for various industries such as transportation, agriculture, telecommunications, and defense continues to grow, the threat of malicious actors spoofing GNSS signals becomes increasingly important. Latest advances in spoofing detection often exploit machine learning or deep learning techniques, which are often applied on high-performance systems able to process large amount of data in a near real-time fashion. Given the recent advances in edge computing and the increasing hardware costs, optimizing such solutions for embedded low-cost devices is rapidly growing in interest.

The purpose of this work is to adapt existing deep learning models (e.g., CNNs such as ResNet) and techniques in order to make them available on the embedded Neural Processing Unit (NPU) of a Maxim MAX78000. The project will comprise several steps, from the analysis of the literature and current state-of-the-art approaches, to the training and synthetization and optimization of existing models to make it compatible with the limited set of available operations. The internship will include the following activities: (i) data identification and understanding (ii) data analysis and pre-processing (iii) model training and optimization for NPU-enabled devices using custom libraries provided by the board manufacturer (iv) performance evaluation, (v) result analysis and visualization.

Contacts